Nilai lim_(x→0)⁡ (x tan ⁡5x)/(cos⁡ 2x-cos⁡ 7x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{x \tan 5x}{\cos 2x - \cos 7x} = \cdots \)

  1. 2/9
  2. 1/9
  3. 0
  4. -1/9
  5. -2/9

(UM UGM 2005)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{x \tan 5x}{\cos 2x - \cos 7x} &= \lim_{x \to 0} \ \frac{x \tan 5x}{-2 \sin \left( \frac{2x+7x}{2} \right) \sin \left( \frac{2x-7x}{2} \right)} \\[8pt] &= \lim_{x \to 0} \ \frac{x \tan 5x}{-2 \sin \left( \frac{9}{2}x \right) \sin \left( -\frac{5}{2} x \right)} \\[8pt] &= \lim_{x \to 0} \ \frac{x \tan 5x}{-2 \sin \left( \frac{9}{2}x \right) \left( -\sin (\frac{5}{2} x) \right)} \\[8pt] &= \lim_{x \to 0} \ \frac{x \tan 5x}{2 \sin \left( \frac{9}{2}x \right) \left( \sin (\frac{5}{2} x) \right)} \\[8pt] &= \frac{1}{2} \cdot \lim_{x \to 0} \ \frac{x}{\sin \left( \frac{9}{2}x \right)} \cdot \lim_{x \to 0} \ \frac{\tan 5x}{\sin (\frac{5}{2} x)} \\[8pt] &= \frac{1}{2} \cdot \frac{1}{\frac{9}{2}} \cdot \frac{5}{\frac{5}{2}} = \frac{1}{2} \cdot \frac{2}{9} \cdot 2 \\[8pt] &= \frac{2}{9} \end{aligned}

Jawaban A.